
www.manaraa.com

Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2007

An open framework for highly concurrent hardware-in-the-loop An open framework for highly concurrent hardware-in-the-loop

simulation simulation

Ryan C. Underwood

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Underwood, Ryan C., "An open framework for highly concurrent hardware-in-the-loop simulation" (2007).
Masters Theses. 4591.
https://scholarsmine.mst.edu/masters_theses/4591

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4591?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

www.manaraa.com

www.manaraa.com

AN OPEN FRAMEWORK FOR HIGHLY CONCURRENT
HARDWARE-IN-THE-LOOP SIMULATION

by

RYAN C. UNDERWOOD

A THESIS
Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI-ROLLA

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2007

Approved by

____________________________ __________________________
Dr. Bruce M. McMillin, Advisor Dr. Daniel R. Tauritz

Dr. Mariesa L. Crow

www.manaraa.com

www.manaraa.com

iii

ABSTRACT

Hardware-in-the-loop (HIL) simulation is becoming a significant tool in prototyp-

ing complex, highly available systems. The HIL approach allows an engineer to build a

physical system incrementally by enabling real components of the system to seamlessly

interface with simulated components. It also permits testing of hardware prototypes of

components that would be extremely costly to test in the deployed environment. Key is-

sues are the ability to wrap the systems of equations (such as Partial Differential Equations)

describing the deployed environment into real-time software models, provide low synchro-

nization overhead between the hardware and software, and reduce reliance on proprietary

platforms. This thesis introduces an open source HIL simulation framework that can be

ported to any standard Unix-like system on any shared-memory multiprocessor computer,

requires minimal operating system scheduler controls, provides a soft real-time guarantee

for any constituent simulation that does likewise, enables an asynchronous user interface,

and allows for an arbitrary number of secondary control components. The availability

of multiple processor cores significantly simplifies the framework by reducing complex

scheduling. The framework is implemented in FACTS Interaction Laboratory (FIL) which

provides a real-time HIL simulation of a power transmission network with physical Flexible

AC Transmission System (FACTS) devices. Performance results are given that demonstrate

a low synchronization overhead of the framework.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Bruce M. McMillin, my advisor, for his support and guid-
ance during this project, Dr. Mariesa L. Crow for her invaluable knowledge and excellent
coursework, and Dr. Daniel R. Tauritz for his advice and support. I would also like to thank
Julia Albath, who provided the necessary guidance and motivation for me to conclude the
work on this project.

This work was supported in part by DOE/Sandia under contract number 291871, in
part by NSF MRI award CNS-0420869 and CSR award CCF-0614633, and in part by the
UMR Intelligent Systems Center. Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABSTRACT.. iii
ACKNOWLEDGEMENTS .. iv
LIST OF ILLUSTRATIONS... vi
GLOSSARY ... vii
SECTION

1 INTRODUCTION ... 1
2 REVIEW OF LITERATURE ... 3
3 APPROACH OF THIS THESIS.. 6
4 OVERVIEW OF HIL SIMULATION FRAMEWORK........................... 9

4.1 REQUIREMENTS .. 9
4.2 ASYNCHRONOUS HARDWARE MANAGEMENT 9
4.3 INTERPROCESS COMMUNICATION ALTERNATIVES 11

5 DISCUSSION OF HIL SIMULATION FRAMEWORK 15
5.1 SYSTEM BLOCK DIAGRAM .. 15
5.2 SYSTEM HARDWARE/SOFTWARE 15
5.3 SOFTWARE VERSIONS ... 17
5.4 HAL (HARDWARE ABSTRACTION LAYER) 20
5.5 SIMULATION CORE (FLATTEN4) 20
5.6 SIMULATION CORE TASK (SIM_DRIVER) 23
5.7 PI (PROPORTIONAL-INTEGRAL) CONTROLLER(S) 23
5.8 LOAD BANK CONTROLLER .. 24
5.9 SIMULATION CONSOLE (SIMGUI) 27
5.10 SYSTEM STATE TRANSMITTER (SIMLISTENER) 28

6 RESULTS AND DISCUSSION .. 30
7 CONCLUSIONS ... 35
8 FUTURE DIRECTIONS ... 36

BIBLIOGRAPHY .. 37
VITA ... 41

www.manaraa.com

vi

LIST OF ILLUSTRATIONS

Page

Figure 4.1: Comparison of hardware approaches. 10
Figure 4.2: The locking scheme, with stale flags. 13
Figure 5.1: High level diagram of the simulation system. 16
Figure 5.2: The FIL laboratory setup. .. 18
Figure 5.3: A FACTS device with embedded computer................................ 19
Figure 5.4: Internals of the FACTS device. ... 19
Figure 5.5: Automata of the HAL. .. 21
Figure 5.6: Data flow for an interface variable being sampled into the system... 21
Figure 5.7: Simulation driver automata. ... 23
Figure 5.8: The programmable load bank console. 25
Figure 5.9: The static load banks. ... 25
Figure 5.10: The load bank power storage array... 26
Figure 5.11: The simulation computer. .. 27
Figure 5.12: The power system simulation GUI... 28
Figure 6.1: Lock acquisition latency, HAL delay 100 microseconds. 31
Figure 6.2: Lock acquisition latency, HAL delay 50 microseconds. 31
Figure 6.3: Lock acquisition latency, HAL delay 5 microseconds. 32
Figure 6.4: Lock acquisition latency, no HAL delay. 32
Figure 6.5: Critical section latency, HAL delay 100 microseconds. 33
Figure 6.6: Critical section latency, HAL delay 50 microseconds. 33
Figure 6.7: Critical section latency, HAL delay 5 microseconds. 34
Figure 6.8: Critical section latency, no HAL delay. 34

www.manaraa.com

vii

GLOSSARY

118-bus, 179-bus systems: Test power system data, each representing a real-world power
distribution network.

A/D, D/A: Analog to Digital, Digital to Analog, Analog to Digital Conversion/Convertor,
Digital to Analog Conversion/Convertor.

HAL: Hardware Abstraction Layer. In this thesis, it refers to a process that acts as a hard-
ware I/O aggregator in order to remove the direct hardware access responsibilities
from the other processes in the system.

Hardware In the Loop (HIL): A technique for testing a hardware prototype that involves
either simulation of the hardware prototype or simulation of the physical system with
which the finished product would interface.

Hardware Under Test (HUT): The physical hardware prototype that is being developed
and validated by the HIL technique.

Interface variable: A variable which is sampled externally from A/D hardware and then
injected back into the system. A real-world variable can be updated by the simu-
lation, but the simulated value is always overwritten by the external value obtained
from A/D subsystem.

Jacobian: A square matrix of the partial derivatives of the variables in a system evaluated
at the current time step.

Mismatch: The error term in Newton’s method. Used to determine whether or not the
iteration has converged on a solution yet.

Newton-Raphson (NR) iteration (Newton’s method): An approach for iteratively solv-
ing a non-linear system of equations.

Nyquist rate: When discretizing an analog variable, the non-inclusive lower bound on the
sampling rate that would be sufficient to capture all of the changes in slope of the
variable; the Nyquist rate is equal to twice the waveform’s frequency. An analog
variable must be sampled at a frequency greater than the Nyquist rate in order to
capture all of the variable’s dynamics.

PI Controller: Proportional-Integral Controller, a type of controller that maintains an out-
put set point based on a feedback loop.

www.manaraa.com

viii

Power Hardware In The Loop (PHIL): A hardware-in-the-loop technique with the spe-
cific property that the simulated system and real system are coupled by the exchange
of real electric power. Also referred to in the literature as “Sim-Stim” interface.

Rest Of System (RoS), Rest Of Power System (RoPS): The part of the power system which
is being computed by the HIL simulation.

SMP: Symmetric Multi-Processing, a general term for a multiprocessor computer that has
a unified memory architecture.

System variable: A variable such as voltage or phase angle that is either given as a precon-
dition to the simulation (as in slack or PV buses) or a dependent variable calculated
internally to the simulation (for PQ buses); a system variable is only directly updated
by the simulation, not by external events.

www.manaraa.com

1 INTRODUCTION

Hardware-in-the-loop (HIL) is a technique in which a portion of a given system is a
simulation algorithm and a portion of the same system is a hardware implementation. The
real hardware is connected via a digital interface to a computer-simulated system model.
HIL is beneficial in testing prototypes of those devices which have complex internal al-
gorithms, those which would cause catastrophe if failed in the field, and those for which
building a laboratory test environment is difficult or impossible [1].

In the HIL, an important goal is that the simulated system demonstrate dynamics
approximating those of the real system as closely as possible, with respect to the hardware
under test (HUT). The accuracy of these dynamics depends both on the mathematical model
of the simulation and on the latency of the simulation’s response to changes in the system
state. The simulation response latency can have many sources such as wire propagation
delay, A/D and D/A interface delay, device drivers, computer load on a multiuser or general
purpose system, user interface management, control programs for auxiliary hardware, task
switching latency, and computational complexity of the simulation model itself. While the
implementation of the simulation model by itself dominates the processor power consumed
by the simulation, an efficient simulation framework with real-time bounded internal delays
is required to provide a predictable and minimal external latency.

Minimizing the amount of time the HIL simulation spends communicating with
other processes, and thus minimizing operating system interference with the simulation
task, allows the simulation to have a real time response in the average case. If the simulation
processes are assigned to particular processors in a multiprocessor shared memory system,
the simulation can be guaranteed to reflect an input change onto its outputs in bounded
time, and can then be considered a hard real time system.

A characteristic feature of the surveyed HIL simulation systems, with the excep-
tion of RT-VTB [2], is that the computer-based simulation component, whether it is pro-
grammed to simulate the hardware under test or the rest of the system, is built upon a
commercial, proprietary simulation platform such as RTDS [3]. This dependency on a
proprietary software platform presents a barrier for independent scientists to reproduce the
results that have been reported in those papers and causes the simulation software itself
to depend on the commercial platform product continuing to exist and be supported by its
sponsor, limiting the useful life of the otherwise independent simulation software. This
may not be such a problem because of the typically quick obsolescence cycle of the hard-
ware developed with the aid of that simulation, but it presents an obstacle when a research

www.manaraa.com

2

team wishes to revive and build upon the work of earlier researchers in developing a similar
product rather than starting completely from scratch.

On the surface, it appears possible to construct an efficient, open real-time simula-
tion framework that runs on a general purpose operating system and on the general purpose
computing hardware available in the FACTS Interaction Laboratory. Such a framework
would permit HIL experiments to be carried out on generic computer systems, reducing
the cost of instrumenting and running the experiments while at the same time increasing
access to independent reproduction of experimental results.

In this thesis, a HIL simulation framework consisting of a real time simulation of
an electric power transmission system coupled with several external hardware control pro-
cesses has been constructed. The framework implements a graphical user interface using
Unix-style inter-process communication and shared memory techniques, as well as vendor-
supplied proprietary real-time extensions to the Linux kernel to allow shielding processors
from hardware interrupts. The framework should be easily adaptable to any Unix-like
system which has support for System V IPC, support for process pinning, a sufficient num-
ber of processor cores, and in which CPUs can be selectively shielded from hardware in-
terrupts. Unlike most previous efforts, this thesis describes a simulation framework that
meets the open source definition, and can thus be used for any purpose with no restriction
[4]. This framework allows for greater access to HIL simulation techniques by enabling
HIL simulation to be performed on easily-accessible general purpose operating systems
and computing hardware.

www.manaraa.com

3

2 REVIEW OF LITERATURE

In order for the result of the HIL simulation to be useful, the results of the simu-
lation must be sufficiently accurate to apply to the real world. HIL simulations involve an
inevitable tradeoff between accuracy and real-time response. While it is given that inac-
curacies in the simulated model will produce uncertain results, metrics have recently been
developed for gauging the actual robustness of the HIL simulation results in terms of un-
certainties in the model [1]. In the FACTS Interaction Laboratory, the HIL simulation is
used strictly to validate an external prototype of a FACTS device, so error in the simulation
has a more limited scope of effect.

The choice of integration time step in the HIL simulation algorithm is important for
similar reasons. An excessively long integration time step introduces inaccuracy into the
results as system dynamics are omitted, but an excessively short integration time step means
less simulated time can be computed in a given block of real time. If the integration time
step is shorter than the longest integration time step that would provide sufficient accuracy
in the result, real-time response could be needlessly sacrificed.

With respect to the accuracy of the HIL simulation, the sampling method of the HIL
interface is an important consideration. If the Nyquist rate is not observed, the simulation
will miss external dynamics occurring at a higher frequency, and the result will be rendered
inaccurate. However, rapidly polling for external events can consume processor time and
potentially invoke peripheral driver code that is not real-time safe, leaving the simulation
with not enough processor cycles to run in real time. One approach to this issue is to
offload the real world variable sampling to external hardware that averages the variable’s
state over a given time period (e.g., the simulation time step); the simulation then receives
the averaged value as an input for each time step [5][6]. The approach of this framework
is simply to sample the real world values asynchronously so that they can be sampled as
frequently as necessary. A 1ms sampling rate would provide the simulation with sufficient
dynamics with respect to the 300 Hz filter on the FACTS [7].

Several methods have been developed for interfacing the simulated (software-based)
and hardware-based components of the HIL system. The simplest method is to couple the
systems using low-voltage Digital-Analog Converter (D/A) and Analog-Digital Converter
(A/D) interfaces [8]. Control signals are sent to the hardware in digital or analog form
and the analog state of the hardware’s outputs are sampled back into the simulation. A
more complex scheme, and one that allows for better validation of the HUT when ap-
plied appropriately, is referred to as PHIL (Power-Hardware-In-the-Loop), or as a “Sim-
Stim” (Simulation-Stimulation) interface. A PHIL method implies that real electric power

www.manaraa.com

4

is being exchanged at the interface boundary between the simulated system and the HUT,
thus simulating as closely as possible the real environment in which the HUT will ex-
ist [9][10][11][12][13]. A MIL (Model-In-the-Loop) interface is very similar to PHIL, but
instead of the simulation driving amplifiers directly to generate the power and sampling
from transducers as in the Sim-Stim interface, in the MIL approach an external conversion
black-box is implemented that converts the A/D and D/A signals on the simulation side
to the real power flow on the device side using voltage-source or current-source convert-
ers [14]. One unique approach to the real-time HIL interface question is to implement the
interface across a USB (Universal Serial Bus) bus using the isochronous transfer mode of
USB, which provides for real-time bounded transfers across the interface [15]. The inter-
face used in the FACTS Interaction Laboratory most closely resembles the MIL approach
because low-voltage A/D and D/A interfaces are utilized between the simulation and the
HUT.

In the context of power systems, HIL has been used in the simulation of power
systems where the goal is to analyze failure scenarios of components such as controllers
and turbines [16]. It has also been proposed as a method for determining optimal control
parameters for power system components such as STATCOM load banks [17]. The HIL
technique has also been proposed as a way to refine the parameters of existing systems,
so there are potential applications for the HIL simulation technique beyond new system
design [17]. The HIL simulation in this work is used to validate the performance of the
FACTS device, part of a distributed power grid control system.

Previous work was done in creating an open source, freely redistributable HIL plat-
form called RT-VTB (Real-Time Virtual Test Bed) [2][18][6][19][20][21]. The approach
of RT-VTB is to use RTAI, a RTLinux-derivative real-time scheduling extension to the
Linux kernel, along with Comedi, a library of A/D and D/A board software drivers that in-
cludes real-time extensions. The authors of RT-VTB built on the existing work called VTB
(Virtual Test Bed). VTB is a C++ framework that implements several types of solvers,
such as simulated analog computer (SAC) and signal extension resistive coupling (SRC).
The solver and simulated system parameters can be configured through the creation of a
“.vts” file. The approach of RT-VTB is to implement a real-time process in the kernel side
of RTAI that sends a periodic “tick” to the simulation userspace process, which in turn
polls the kernel process using the RTLinux FIFO mechanism. One tick of the simulation
userspace process updates the real world variables from A/D sampling, computes the next
time step, and outputs any control signals via D/A. Because Comedi is a real-time library,
and because one computational time step of the VTB simulation userspace process always
runs much faster than real-time, a hard real-time response is guaranteed in the RT-VTB

www.manaraa.com

5

implementation. In contrast, the FIL power system simulation only makes a soft real-time
guarantee, due both to the general purpose operating system requirement and the nature of
solving a non-linear system such as a power system.

Existing HIL simulations such as VTB have implemented a Graphical User Inter-
face (GUI), either for visualizing the design of the simulation model as in [22], or in the
modification of the control parameters of a running simulation as in [23]. Similarly, a GUI
was implemented for control and monitoring of the power system simulation and power
generator.

www.manaraa.com

6

3 APPROACH OF THIS THESIS

The approach of this thesis is to enable a soft-real-time HIL simulation to be built by
first relaxing the real-time constraints on the simulation algorithm itself. It cannot always
be guaranteed that a non-linear system with an arbitrary set of values for the system’s real
world variables will have a bounded number of steps to convergence with an iterative solver
such as Newton-Raphson (NR) [24]. This framework was designed for implementation of
a power system simulation, which is modeled as a system of non-linear equations and is
solved using NR. If a non-linear system such as a power system were specified to run in
hard real-time, it would not necessarily be useful because whether the constraint is met
or not depends on the inputs to the system. Once the power system has been allowed to
converge to a relatively steady state, convergence of future time steps will be very fast (2 or
3 iterations); small changes in the real world values will not impact this fast convergence.
However, a power system solver under a hard real-time deadline may produce no results at
all, since if it is not given enough real time to converge to a solution in a given time step, it
may never have enough time to converge to a new steady state solution on any future time
step.

It has been shown that only a fixed integration time step can satisfy hard real time
constraints, and thus a variable step should be only cautiously employed [24]. Methods
of accounting for multiple switching events during a timestep and recalculating the step
appropriately also have been developed, but the computational expense may preclude us-
age in a real-time environment because the usual approach is to restart the current timestep,
switch to a variable timestep to solve until the point where the events occur, and then switch
back to the nominal time step when the simulation has caught up. One way to reduce the
computational expense is by employing linear interpolation between the states preceding
and following the event in question [25]. A more refined approach is to combine a variable
timestep with interpolation to arrive at a more accurate result, although at higher computa-
tional expense [26]. The FIL power system simulation uses a fixed time step simulation and
omits any attempt to account for missed external dynamics, since any interesting external
dynamics in the system occur at a relatively slow rate.

Regarding the simulation itself, it might be tempting to implement the simulation
as a single, normal process. After all, if the program is in ready-to-run state most of the
time and the system is not loaded with other tasks, normal operating system scheduling
should provide a reasonable response time. It would then be up to the user to prevent the
computer from becoming loaded with other tasks while the simulation is running. This

www.manaraa.com

7

approach unfortunately cannot offer any sort of real-time guarantee because a general pur-
pose operating system’s scheduler is real-time nondeterministic; there is no way to predict
how a scheduler will behave without auditing and certifying a particular scheduler for real-
time response. System calls can also have quite unpredictable blocking characteristics. A
single-process design would also require that all hardware I/O and user interface manage-
ment be performed synchronously. Depending on the real-time capability of the hardware
drivers, this may not be feasible. Additionally, a synchronous user interface is not good
practice from the perspective of human-computer interaction.

Another approach, as in the approach of RT-VTB, is to implement the simulation
as a real-time process under a certified real-time operating system (RTOS). Several prob-
lems with this approach are a lack of certified real-time device drivers for peripheral hard-
ware as well as a general difficulty of coordinating hardware controllers and user interface
through a RTOS. It can be argued that a certified real-time operating system is an unaccept-
able requirement for a general purpose real-time simulation framework, because it limits
the availability of the framework to only those hardware platforms for which a certified
real-time operating system is available. Due to the generally poor portability of code be-
tween real-time operating systems, it would also leave all subsequent researchers with little
choice but to utilize the same real-time operating system. For these reasons, the idea of
implementing the simulation under an open source hard RTOS like RTLinux [27], RTAI
[28], or KURT-Linux [29] was rejected.

A multi-process design would also have to endure several challenges, not the least
of which is that the several processes would have to coordinate access to shared data and
avoid race conditions through the use of locks, which are synchronization primitives pro-
vided by the operating system. Misuse of locks or the accidental introduction of a lock
ordering bug could lead to seemingly-random deadlock – a partial or total halt of the sys-
tem. Misuse of locks could also foil the real-time performance of the system by stalling an
important process for longer than otherwise necessary.

The decision was made to use a multi-process design requiring at least N+1 proces-
sor cores in the system, where N is the number of concurrently running processes that hold
a lock. Those lock-holding processes are pinned to distinct CPUs so that no other process
can be scheduled on the CPU that a lock-holding process owns. Along with shielding crit-
ical processors from hardware interrupts and disallowing calls to non-realtime-safe code
inside critical sections, this scheme guarantees that the time that any process holds the lock
is bounded, ensuring that the simulation process time step – which takes a lock itself in
order to read the asynchronously updated values of its real world variables – is bounded.
The framework described in this thesis utilizes a shared memory architecture, where the

www.manaraa.com

8

A/D is sampled and the D/A state is updated in a process that runs concurrently with the
simulation, and where that process shares the simulation state memory as in the approach
of [15].

www.manaraa.com

9

4 OVERVIEW OF HIL SIMULATION FRAMEWORK

In this work, a framework has been produced that enables soft real-time simulation
with no specialized hardware support and no specialized operating system support for real-
time scheduling, meaning it can be run on an off-the-shelf Unix system such as Linux as
long as it complies with the respective standards. The simulation algorithm itself has no
requirement beyond the fact that it must run fast enough by itself on the given system’s CPU
and memory architecture to satisfy the real time constraints of the system. The framework
imposes few additional constraints on the hardware and operating system beyond those
imposed by the simulation core.

4.1 REQUIREMENTS

For any type of real-time computation, the driving goal is to maximize the propor-
tion of time that the computation process is in “running” or “ready to run” state compared
to the time that it is in other states, such as “waiting on hardware” or “waiting on lock”.
Thus, the primary goals of this framework were to decouple the management of A/D and
D/A hardware from the simulation process itself and to use inter-process communication
techniques that cause minimal blocking in the simulation process.

4.2 ASYNCHRONOUS HARDWARE MANAGEMENT

Unix drivers typically include a userspace library that abstracts the kernel driver
interface and which is called directly by the application wishing to use the hardware in-
stead of the application calling the kernel interface directly. The API of the library thus
insulates the application from changes in the implementation of the driver, which can be
quite volatile.

The goal of decoupling the management of A/D and D/A hardware from the simu-
lation process is to eliminate the overhead caused by peripheral device I/O. This overhead
comes from calling the userspace library, transitioning to kernel mode, and communicating
with the peripheral through its registers. Sometimes the kernel mode transition can be elim-
inated if the device supports memory mapped I/O, but in all cases the sequence of device
communication must be repeated every time analog data is to be captured or sent. Placing
the burden of hardware communication on the simulation process is unreasonable in two
ways. First, it adds to the baseline latency of a simulation time step due to the layers of
driver code described above, ensuring that one iteration of the simulation loop can never
be completed in less real time than the hardware I/O requires. It also requires making a

www.manaraa.com

10

difficult decision about the location of the code performing the analog data updates relative
to the code implementing the system solver (NR) loop. If this code is placed outside the
NR loop, the most recent updates to the system variables are unavailable to the solver until
a time step has passed, and a latency between the solver updating the system state and the
real world outputs reflecting the updated state occurs. However, placing the update code
inside the NR loop requires more indirection of memory access, slowing the solver; the
complexity of the inner solver code itself is also increased, potentially causing instruction
cache misses. Decoupling the A/D and D/A and having a separate process asynchronously
merge the simulated system state with the real world state avoids these problems and allows
as fine a granularity of A/D and D/A sweeps as the application requires (Figure 4.1).

Figure 4.1: Comparison of hardware approaches.

For the remainder of this thesis, interface variables refer to the variables that are
sampled externally from A/D hardware and then injected back into the system.

www.manaraa.com

11

4.3 INTERPROCESS COMMUNICATION ALTERNATIVES

In contrast to the Windows platform, a Unix environment implements a diverse,
although not always orthogonal, set of inter-process communication (IPC) primitives for
message passing and synchronization. Available mechanisms are signals, pipes, sockets,
message queues, semaphores (POSIX and SysV implementations), and shared memory (ei-
ther shared pages external to the process as in POSIX shared memory or a shared program
area and heap memory as in POSIX threads).

Many of these IPC primitives have conditions under which they block (suspend)
the process utilizing them. This would be unacceptable for the simulation process since it
is under a real-time constraint. For example, attempting to receive a message in a currently
empty queue, or attemping to read a pipe or a socket which currently has no waiting data
will block the calling process. Some system calls such as read() have non-blocking variants.
A non-blocking system call is guaranteed to not block the process; non-blocking Unix
system calls return EAGAIN (“try again”) as an error if the call would have otherwise
been blocked. This approach has the problem of requiring the application to periodically
poll for changes in the status of the pipe or socket. This polling incurs a performance
penalty above and beyond a normal timed-interval wait because each poll also costs the
overhead of a system call. A Linux system call flushes the CPU pipeline since system
calls are implemented with a designated software interrupt. Additionally, the entire CPU
register set must be saved to memory before kernel code is executed, and before returning
from the system call, the registers must be reloaded with the application’s CPU context.
The biggest problem of all is that the read() system call is not real-time safe on a general
purpose operating system.

Some sort of shared memory approach was thus required, so that IPC could occur
without a system call. A thread-based approach was rejected because one of the system
requirements was that the components of the simulation needed some sort of process prior-
itization, or at the very least CPU affinity, so that the scheduling of the core simulation task
was not potentially affected by the user interface, peripheral controllers, or other compo-
nents. A method of manually controlling thread scheduling in the required fashion did not
appear to be available. An obvious approach that remained was to use the combination of
System V semaphores for synchronization and SysV/POSIX shared memory for message
passing.

It should be noted that the choice of using shared memory provides no inherent
synchronization or serialization of memory read and write operations, so special care must
be taken to avoid the case where a reader reads a piece of data which has been only partially
written to the shared memory region. This additional problem, caused by the choice of

www.manaraa.com

12

shared memory as the message passing medium, can be addressed by the use of System V
semaphores.1

The most general usage of a semaphore is to implement Dijkstra’s P() (hold) and
V() (release) operations [30]. The framework abstracts the relatively complex and obscure
C code required for holding and releasing a System V semaphore into relatively simple
DOWN() and UP() macros that are used throughout the codebase. These macros can then
be used whenever it is necessary for a system component to wait for exclusive access to
some shared resource, such as when a system component needs to update a data object in
shared memory and the update cannot be performed atomically. This is a common situation
since usually a processor can only atomically update data types that it supports in hardware
– such as integers up to and including the word size of the processor as well as 32-bit and
64-bit floating point values – and many objects in real-world systems are sets of such types
and thus cannot be atomically updated as a set.

Since it would be best to avoid at all costs the event where the process bearing the
computational load is rescheduled or even blocked at any point, the framework must ensure
that system calls which could block the process are kept to a minimum, if not eliminated.
(It is not possible to create an exhaustive list of all blocking system calls to avoid because
many system calls specified in standards have unspecified blocking behavior and are im-
plemented in differing fashions depending on the operating system’s design.) I/O involving
device drivers would usually block due to hardware response latency and recovery times,
but this is not a problem since device I/O is performed asynchronously in this framework.
Unfortunately, in order to utilize System V semaphores there is no choice but to use the
semop() system call. Due to the nature of semaphores the semop() call will be blocked
if the semaphore is already held. It is possible to specify the IPC_NOWAIT flag to avoid
blocking, but this would allow the process to proceed without acquiring the semaphore and
without reading the updated data. If the timing between processes ends in the worst case,
the computational process may never be able to read updated data captured from the hard-
ware, and thus the simulated state would eventually diverge from the real state sufficiently
to invalidate the result of the simulation.

This problem was solved by utilizing a set of “new data” flags, in an approach
similar to the general double-checked locking approach [31]. To be consistent with the
implemented framework code, these flags will hereafter be referred to as “stale” flags. (A
“stale” flag can simply be regarded as an active-low “new data” flag.) Each stale flag Xf for

1System V semaphores are used by allocating a semaphore set which is accounted for externally to the
process, with a per-user quota. When the processes using the semaphores are destroyed, the semaphore set
still exists in the operating system, so the simulation must manage its semaphores to avoid leaving behind
orphans.

www.manaraa.com

13

interface variable X exists as an atomically-updatable data type and corresponds to the data
item or set that is protected by a lock P(X). When that data set is updated by a writer holding
the corresponding semaphore, the stale flag is also reset before releasing the semaphore.
An interested reader can check the stale flag before attempting to take the lock P(X). If the
stale flag Xf is set, there is no reason to take the lock P(X), since the data set X has not yet
been updated since the last time it was read, and in this case a system call is avoided. If
the stale flag Xf is reset (not set), then the computational process takes the lock P(X), reads
the interface variable X, sets the stale flag Xf, and finally releases the lock P(X) (Figure
4.2). Note that the operating system is only called when lock P(X) is taken or released, so
avoiding unnecessary locking in this fashion is an important real-time advantage.

Figure 4.2: The locking scheme, with stale flags.

Once the semaphore operations were implemented, the semaphore set was placed
in shared memory. It should be noted that this is a cooperative resource sharing scheme. It
is possible for a rogue process to take and hold any lock indefinitely since there is no form
of partitioning or protection of the shared memory region. It is also possible for a rogue
process to ignore the locks completely when reading or writing. If locks are ignored when
writing or reading, this will lead to the interested reader reading an inconsistent object.
Thus, all access to the shared resource must be coordinated by semaphore. It should also be

www.manaraa.com

14

observed from basic principles that the stale flag scheme is by itself not a sufficient mutual
exclusion mechanism. It is simply a way to avoid blocking the computational process
unnecessarily to check for new data at times when the data in the mailbox has clearly not
been updated since the last check.

In this thesis, individual slots in shared memory will be referred to as “mailboxes”
(Figure 5.1).2 The slot size should be defined as the largest atomic data type that the
platform allows; in the case of the FIL hardware, it is a double-width floating point value
with 64 bits of storage. Data items of non-floating point type can be written to the slot by
obtaining a pointer to the slot’s memory location and casting the pointer to the desired type
before performing the write and any subsequent reads from that slot.

2Use of the term ‘mailbox’ in this implementation should not be confused with the more common IPC-
related usage that refers to a message queue that is allowed to grow to any size.

www.manaraa.com

15

5 DISCUSSION OF HIL SIMULATION FRAMEWORK

The simulation framework contains many components. Each component of the
framework along with some details about its implementation will be described. Discussion
about the implementation of the simulation itself will be limited to those aspects which
affect its integration into the framework; the simulation’s algorithmic implementation will
remain a “black box” to assure the applicability of the framework to any simulation satis-
fying the requirements.

5.1 SYSTEM BLOCK DIAGRAM

In Figure 5.1, the framework is decomposed into several principal components.
These include the Simulation Engine which is comprised of the PI (Proportional-Integral)
controller that controls part of the HIL line, a Simulation Core that contains the numeric
solver, a Load Bank Controller that controls the load of the HIL line, and a Visualization
and Long Term Control (Max Flow) sender. These interact with the Hardware Abstraction
Layer (HAL) through Shared Memory regions. Companion work has formally specified
the relationship of each component to the system for the purposes of hardware/software
co-design [32][33].

In this system, the HAL and the simulation process are considered critical pro-
cesses, so at least three CPU cores are necessary to ensure that the soft real-time constraint
is met.

5.2 SYSTEM HARDWARE/SOFTWARE

This testing was carried out on a 4-processor Concurrent Computer iHawk rack-
mountable system. The CPUs in this system are Intel Xeon 2.2GHz with 512KB L2 cache
and 2MB L3 cache. The CPUs are a P4 Netburst architecture and have hyperthreading
enabled to enable two logical cores per CPU. Real-time scheduling is achieved by pinning
processes to a particular CPU with the sched_setaffinity(2) Linux system call, and then
routing hardware interrupts away from processors that are running critical processes using
Concurrent’s proprietary shield(1) command. The operating system is RedHawk Linux
2.2, which is essentially Red Hat Enterprise Linux 3.0 with a Linux 2.6.6 kernel and some
Concurrent-authored realtime support patches (for use with their NightStar tools). The sys-
tem has 4GB RAM and a 74GB SCSI hard disk. The D/A hardware is composed of two
General Standards Corporation GS-16AO12 boards which are supported by the Comedi
driver suite with the ‘ni_pcimio’ driver, and the A/D hardware is a General Standards Cor-
poration 16AI64LL-2 with 64 input channels supported by the ‘ai64ll’ driver from GSC.

www.manaraa.com

16

Figure 5.1: High level diagram of the simulation system.

www.manaraa.com

17

The D/A and A/D hardware is connected to the power generation and control hardware
with a custom interface board.

The Flexible AC Transmission System (FACTS) consists of several devices, in-
cluding power sensors, a Unified Power Flow Controller (UPFC), a DSP, and an embedded
computer (Figure 5.2, Figure 5.3, Figure 5.4) [34].

The embedded computer implements a Long-Term Control algorithm that controls
the state of the UPFC. The embedded computer communicates with the simulation com-
puter via ethernet and receives operator input from the keyboard. The UPFC is imple-
mented as a pair of compensators that together control real and reactive power flow on the
transmission line.

5.3 SOFTWARE VERSIONS

The software versions used in the final experiments were:

Linux Kernel: version 2.6.6 of the RedHawk Linux kernel compiled with a custom con-
figuration to add parallel port drivers (Section 5.8)

Linux Distribution: Concurrent’s RedHawk Linux distribution, roughly equivalent to Up-
date 8 of Red Hat Enterprise Linux Workstation version 3.0

GNU C Library: 2.3.2

GNU C/C++ Compiler: 4.1.1

Intel C/C++ Compiler: 9.1

Comedi: version 0.7.22 of libcomedi and the Comedi ‘ni_pcimio’ D/A driver

General Standards Corporation A/D Driver: version 1.30 of the ‘ai64ll’ driver

GTK+ Toolkit: 1.2.10

libieee1284: 0.2.10

shield: version 1.0.1 authored by Concurrent Computer

www.manaraa.com

18

Figure 5.2: The FIL laboratory setup.

www.manaraa.com

19

Figure 5.3: A FACTS device with embedded computer.

Figure 5.4: Internals of the FACTS device.

www.manaraa.com

20

5.4 HAL (HARDWARE ABSTRACTION LAYER)

The HAL was developed in response to the requirement that the external hardware
state be asynchronously updated, since the simulation engine needs to spend as much time
as possible actually performing computations related to retiring a time step in order to
reliably meet the real time deadline. HAL runs as a separate process, with automata as
depicted in Figure 5.5, and acts as a concentrator for all physical I/O.

Its main loop runs as often as the application requires. On a SMP (Symmetric
Multi-Processor) system such as in the FIL lab, one processor can be dedicated to running
the HAL process. In this case, the main loop can run continuously and update the hardware
state as quickly as the hardware allows because the CPU does not have to yield to other
processes such as the simulation process or user interface.

The HAL main loop simply does the following in pseudocode:
SweepDtoA();
CollectAndConvertAD();
usleep(DELAY);

The function of SweepDtoA is to take the values that are in the mailboxes which
correspond to what the current state of the DAC and Digital I/O outputs should be, and write
out the entire state to the hardware. The state of the real hardware should thus consistently
follow the state of these variables in the mailbox .

CollectAndConvertAD is a collection of steps taken to process the analog readings
into an interface variable in the system. Several variables, such as voltage and current
readings, are filtered through a first-order low-pass filter (LPF) to reduce sampling noise
caused by sensor inaccuracy. The scale factors that are used to scale a voltage level to a
real value to be placed in an interface variable are dependent both on the particular data
item and the particular sensor that was used to gather its value, and thus are experimentally
determined and then encoded as magic constants. The flow of data for one interface variable
is depicted in Figure 5.6.

The sleep interval is not required unless the system cannot dedicate a CPU to the
HAL process. In this case, sleeping for only 1 microsecond would not have much of a delay
effect; its actual purpose is to ensure that the HAL process yields the CPU at this point so
that another process is allowed to run.

5.5 SIMULATION CORE (FLATTEN4)

The simulation core is a library that implements the solution of the non-linear power
system at a particular time step. The simulation core takes the physical connections, bus

www.manaraa.com

21

Figure 5.5: Automata of the HAL.

Figure 5.6: Data flow for an interface variable being sampled into the system.

www.manaraa.com

22

voltages, phase angles, power generation, and admittances of the power system as inputs,
and calculates the new bus voltages and phase angles using a non-linear system solver,
specifically NR [35, pp 52-69]. The NR method involves repeatedly updating the Jacobian
matrix that describes the partial derivatives of the state variables with respect to each other
and directly solving the resulting linear system, until the “mismatch” variables (∆P and
∆Q) are driven close enough to zero. This should take two to three iterations in the average
case, but may take many more depending on how far away the system is from the steady
state.

The first implementation of the simulation core was in C++. It was too slow to run
in real time, even independent of the rest of the system. There were several aspects of this
approach that hindered performance. The LU decomposition was performed dynamically
each time the Jacobian was updated (several times within each NR solution) and access
to the system matrices was performed dynamically. If the system matrices were stored as
normal dense matrices, the only cost was wasted memory space and a larger cache utiliza-
tion. On the other hand, if the system matrices were stored as sparse matrices, indexing
became a much more complex operation. Using sparse matrices allows computational sav-
ings such as avoiding useless multiplications by zero in the LU factorization step. However,
the number of matrix indexing operations alone made using sparse matrices infeasible if
the program were to run in real time.

A new approach was developed to symbolically perform the LU decomposition at
compile time, avoiding the expensive indexing and multiplications associated with the LU
decomposition. This was accomplished by writing a MATLAB program that generated
the C source code files comprising the solver [36]. Memory accesses performed by the C
program were “flattened” so that memory was accessed through a single pointer for each
matrix instead of through multiple levels of indirection. It was also found that using the
Intel C compiler in place of the GNU C compiler improved performance of the “flattened”
simulation core by roughly 20-30% in the experimental system. Experimentally, it was
found that this solver performs the evaluation of the Jacobian and the NR solution of the
system in real-time for all steady state time steps when the time step is defined as 1ms.
When the system encounters a contingency such as the removal of a line, a change in gen-
erator voltage, or a change in power flow through the FACTS device under test, it initially
violates the real time constraint, but then catches up within several time steps.

It is important to note that the simulation core library was written in a modular
fashion that does not prevent it from being adapted to other uses beyond HIL experiments.
Accordingly, it is only loosely coupled to the simulation framework described in this thesis.

www.manaraa.com

23

5.6 SIMULATION CORE TASK (SIM_DRIVER)

This program wraps the simulation core and takes care of minimal locking to update
the simulated system state from the sampled hardware state. Its automata is described in
Figure 5.7.

Figure 5.7: Simulation driver automata.

The simulation task also updates the state of the controller threads for the external
hardware and processes such as the generator and loadbank controllers. It either takes the
shared memory region passed to it by the controller process, or sets up its own shared
memory region. It then spawns the HAL process and passes it the handle for the shared
memory region.

5.7 PI (PROPORTIONAL-INTEGRAL) CONTROLLER(S)

The PI controller program is run as a thread within the simulation process. Up to
three PI controller threads can be created, one for each of the three FACTS devices in the
FIL power system. The PI controller thread is in charge of controlling the motor hardware

www.manaraa.com

24

and ensuring that it is left in a safe condition and that all physical constraints are met. It
also controls the output voltage of the generator by varying the field current (If). 3

The PI controller uses the mailbox system like any other simulation component. It
sets the RPM and field current through the mailbox interface for the D/A card and reads
back the output voltage and field current through the mailbox interface for the A/D card.
Separate mailboxes are supplied for up to three PI controllers.

The PI controller’s only input is a voltage set point for the bus to which the FACTS
generator side is connected. This set point is determined by the output of the simulation for
that time step. When the set point is updated, the PI algorithm steps the output field current
to approach the new V set point asymptotically. The rate of stepping is controlled by the
constants Ki and Kp. The further away the present V value is from the set point, the faster
the new value will be approached.

If at any point the generator voltage, output current, or field current go out of range,
the PI controller shuts down the motor.

5.8 LOAD BANK CONTROLLER

The variable load bank (Figure 5.8) is a programmable load bank that replaced the
manually configured static load banks (Figure 5.9). It consists of an array of lead-acid wet
cell batteries (Figure 5.10) that are connected in various numbers to the load side of the
power system in order to draw power from the system as the batteries accumulate a charge.

The load bank is controlled by some power electronics that are interfaced to two
Dalanco model 5000 DSP boards based on TI TMS320c5x DSP. These boards are installed
in a standard PC and execute controller algorithms. A program on the PC is responsible
for loading the DSP programs and graphing the output of the sensors as the loadbank is
controlled[37].

A method of controlling the variable load bank from the simulation in response to
the simulation state became necessary. The load bank processor takes an input in megawatts
(MW). A modified PC parallel cable connection was implemented between the simulation
computer and the load bank processor that can transfer 8 bits at a time and has an interrupt
driven handshake. Since the simulation computer has a PCI-X system bus and no built-in
parallel port, a PCI-X board was purchased; the board is based on an Oxford Semiconductor
OX16PCI952 ASIC which implements a PC-compatible ECP parallel port and dual serial
ports. The Pload setting for the FACTS load side bus is written to a mailbox that the

3In the FIL experiments, the RPM of the generator motor was fixed since at the time there was not a
functional tachometer for feedback; one could also leave the field current constant and vary the speed of the
motor to achieve the desired output voltage.

www.manaraa.com

25

Figure 5.8: The programmable load bank console.

Figure 5.9: The static load banks.

www.manaraa.com

26

Figure 5.10: The load bank power storage array.

loadbank controller thread picks up. The load bank controller thread encodes the P value
into 8 bits and places the encoded value on the parallel cable, then the interrupt line is
asserted. On the load bank computer, the interrupt is handled by the MS-DOS-based driver
program. The value on the parallel cable is read, and an acknowledgement interrupt is
asserted back to the simulation computer, at which point the simulation computer restarts
the communication by sending its most current P value. An open source library libieee1284
is utilized as a parallel port abstraction to simplify the code. The Linux kernel was modified
to enable interrupt-driven operation for the Oxford port and the patch was submitted to the
main kernel developers. A program was also written to program and to dump the Oxford
card’s onboard serial EEPROM, and to parse the contents of an EEPROM image. It was
anticipated that the Oxford card could have its I/O addresses assigned to the standard PC
parallel port I/O addresses in order to avoid the Linux kernel modification, but it turned
out that such a configuration was not possible with the Oxford hardware. In the end the
standard Linux kernel driver for PC parallel ports was used.

www.manaraa.com

27

5.9 SIMULATION CONSOLE (SIMGUI)

It frequently becomes important for the operator at the simulation console (Figure
5.11) to exercise some sort of control over the simulation once it is running. The sim-
ulation architecture was designed so that the simulation could be run using any physical
input method or “headless” with no console at all. All user interface communication is

Figure 5.11: The simulation computer.

performed via state variables which are stored in mailboxes assigned for this purpose. The
user interface was implemented using the GTK+ toolkit (Figure 5.12), but any toolkit could
be utilized to construct any user interface as long as communication with the simulation is
performed via shared memory. Since GTK+ has a callback-driven API with a C interface,
it was necessary to employ caution when obtaining both GUI locks and shared memory
locks to avoid the introduction of lock ordering errors that would cause a difficult-to-debug
deadlock.

www.manaraa.com

28

Figure 5.12: The power system simulation GUI.

5.10 SYSTEM STATE TRANSMITTER (SIMLISTENER)

The system state transmitter component transmits the current values of voltage and
phase angles at each bus of the power system in response to incoming network requests.
This state data is used by the algorithm in the Long Term Control (LTC) process of the
FACTS and by the power system visualization console.

The transmitter is implemented as a thread which shares the system state with the
simulation. The thread implements a minimal server which receives incoming connections
and then enters a request loop. The request loop only supports a handful of commands,
the most important of which is to initiate a state dump, at which point the system’s “V”
and “theta” variables are captured in a snapshot and then copied across the network. Since
this is an infrequent operation, it might be possible for the LTC or the visualization to
cause a slowdown in the simulation by repeatedly requesting the state variables, causing
an increase in lock contention for the snapshot copy and a possible missed deadline for the
simulation.

There are several approaches to providing the snapshot requests, depending on how
the snapshot data is to be used. If the snapshot is required to be consistent with respect to

www.manaraa.com

29

the simulation time step, one approach is to limit the snapshot requests to no more than a
certain number of requests per time period. The snapshot would have to be first copied into
a local buffer before being sent to the network layer for transmission so that the lock is not
held for an unreasonable amount of time. If the snapshot does not necessarily have to be
consistent with respect to a simulation time step, another approach is possible. Since all of
the simulation state data are stored in atomic data types according to the system design, the
snapshot mechanism could be implemented so that the simulation simply writes the state
data as usual and the state is read “as-is” from the buffer, possibly cutting into the middle
of a time step, but requiring no lock at all.

www.manaraa.com

30

6 RESULTS AND DISCUSSION

Experiments were performed with several different settings for the HAL update
delay: 100 microseconds, 50 microseconds, 5 microseconds, and no delay. The time the
simulation spent acquiring the lock, as well as the time spent in each critical section, were
then examined.

The results in Figures 6.1 through 6.4 demonstrate that the worst case average la-
tency is less than 20 microseconds (less than 5% of a simulation time step). The results
show that, even when using a HAL update frequency far greater than that which is mini-
mally required to capture the 300Hz system dynamics [7], the framework has no trouble at
all keeping the lock acquisition time quite small.

The results in Figures 6.5 through 6.8 demonstrate that the time spent in the critical
section for each interface variable, including releasing the lock, is on average less than 15
microseconds.

In the worst case the average delay caused by the lock acquisition is less than 20
microseconds and the average delay caused by updating each of four interface variables is
less than 15 microseconds. Given these results, it is evident that for the power simulation
implemented in this framework, as long as the simulation time step can be computed with
at least 80 microseconds to spare, the additional locking imposed by the framework will
not cause the real time constraint to be violated.

The experiments show that the average time to acquire a lock increases as the HAL
update frequency increases. This is because the time the simulation spends acquiring the
lock primarily depends on how frequently the HAL takes the lock to update the interface
variables. On the other hand, the time spent inside the critical section should remain rela-
tively constant. It is a balancing act between having too many locks, which adds constant
overhead even when lock contention is low, and too few locks, which increases lock ac-
quisition latency. When implementing a simulation engine within this framework, careful
timing analysis should be conducted to determine how much lock contention is occurring,
so that it can be appropriately addressed.

With a power system simulation implemented in this framework, the simulation
is able to respond to changes in the power flow through the FACTS device in soft real
time with update latency determined by the polling frequency of the HAL component. A
system based on this framework has been in use since March 2007 in the FACTS Interaction
Laboratory [38] at the University of Missouri-Rolla.

www.manaraa.com

31

 0

 5

 10

 15

 20

 25

 30

 35

 0 10000 20000 30000 40000 50000 60000 70000

M
ic

ro
se

co
nd

s

Iteration

Lock acquisition, delay 100

P1
P2
Q1
Q2

Figure 6.1: Lock acquisition latency, HAL delay 100 microseconds.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

M
ic

ro
se

co
nd

s

Iteration

Lock acquisition, delay 50

P1
P2
Q1
Q2

Figure 6.2: Lock acquisition latency, HAL delay 50 microseconds.

www.manaraa.com

32

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
ic

ro
se

co
nd

s

Iteration

Lock acquisition, delay 5

P1
P2
Q1
Q2

Figure 6.3: Lock acquisition latency, HAL delay 5 microseconds.

 0

 10

 20

 30

 40

 50

 60

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

M
ic

ro
se

co
nd

s

Iteration

Lock acquisition, delay 0

P1
P2
Q1
Q2

Figure 6.4: Lock acquisition latency, no HAL delay.

www.manaraa.com

33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10000 20000 30000 40000 50000 60000 70000

M
ic

ro
se

co
nd

s

Iteration

Time in critical section, delay 100

P1
P2
Q1
Q2

Figure 6.5: Critical section latency, HAL delay 100 microseconds.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

M
ic

ro
se

co
nd

s

Iteration

Time in critical section, delay 50

P1
P2
Q1
Q2

Figure 6.6: Critical section latency, HAL delay 50 microseconds.

www.manaraa.com

34

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
ic

ro
se

co
nd

s

Iteration

Time in critical section, delay 5

P1
P2
Q1
Q2

Figure 6.7: Critical section latency, HAL delay 5 microseconds.

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

M
ic

ro
se

co
nd

s

Iteration

Time in critical section, delay 0

P1
P2
Q1
Q2

Figure 6.8: Critical section latency, no HAL delay.

www.manaraa.com

35

7 CONCLUSIONS

In this thesis, the goal was to create a framework capable of soft real-time support
for the FIL power system simulation. This goal has been accomplished by enabling soft
real-time support for the FIL power system simulation at its 1 millisecond time step. This
framework also accomplishes the goals of having an open architecture to be used with an
arbitrary real-time simulation core, on any Unix-like operating system with the appropriate
scheduling controls, and on any general purpose computer with a compatible operating sys-
tem. As proof of its utility, the framework has been deployed and used to run experiments
in the FACTS Interaction Laboratory.

www.manaraa.com

36

8 FUTURE DIRECTIONS

One potential improvement to the framework described in this thesis would be to
use a set of Unix signals to asynchronously notify the simulation process that data has been
updated. In this way even the minimal shared memory polling that is performed by the
simulation process could be eliminated. However, the number of signals available to Unix
programs is quite small, so it is unclear whether a sufficient number of signals exist for the
purposes of implementing a generic mechanism for asynchronous state update notification.

It should be noted that a potential error in the current implementation exists insofar
as unused operating system signals are not masked, leaving a possibility for the operating
system or other processes to interfere with the real time performance of the system. No ev-
idence of such interference was observed in these experiments, but a more complex system
may trigger this behavior, so if in doubt the signals should be masked.

It may be possible to integrate the entire simulation system into a single process
with several POSIX threads. This would allow the removal of the external shared memory
region and its associated management; a semaphore region will still be necessary unless
the synchronization macros are ported to POSIX semaphores, however. A drawback to
this approach, as noted above, is that a threaded system presents more problems with man-
aging CPU affinity and scheduling priority, so this configuration may not be possible to
implement on existing platforms.

Another avenue for exploration could be the implementation of the techniques de-
scribed in [26], in which an interpolation technique is combined with a variable time step.
This method attempts to account for events that happen during a time step. It would make
the simulation more accurate, but at the cost of computational complexity, and it is unclear
if the implementation of such a technique would be feasible in the presence of real-time
constraints.

It may also be possible to develop this framework into a hard real-time framework
on a hard RTOS if a hard real-time simulation core is utilized. It is unlikely that a power
system simulation core can produce useful results under a hard real-time constraint, but
other types of simulations not involving a non-linear solver may benefit from this approach.

www.manaraa.com

37

BIBLIOGRAPHY

[1] M. Bacic, “On hardware-in-the-loop simulation,” Decision and Control, 2005 and
2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on,
pp. 3194–3198, December 2005.

[2] B. Lu, “The real-time extension of the virtual test bed: A multi-solver hard real-time
hardware-in-the-loop simulation environment,” Master’s thesis, University of South
Carolina, 2003.

[3] “RTDS Technologies, Inc. Homepage.” Online. http://www.rtds.com/, fetched August
22, 2007.

[4] “The Open Source Definition.” Online. http://www.opensource.org/docs/osd, fetched
September 11, 2007.

[5] H. P. Figueroa, A. Monti, and X. Wu, “An interface for switching signals and a
new real-time testing platform for accurate hardware-in-the-loop simulation,” in 2004
IEEE International Symposium on Industrial Electronics, vol. 2, pp. 883–887, May
2004.

[6] A. Monti, H. Figueroa, S. Lentijo, X. Wu, and R. Dougal, “Interface issues in
hardware-in-the-loop simulation,” in 2005 IEEE Electric Ship Technologies Sympo-
sium, pp. 39–45, July 2005.

[7] Y. Sun, B. McMillin, X. F. Liu, and D. Cape, “Verifying noninterference in a cyber-
physical system: The advanced electric power grid,” in Proceedings of the Seventh
International Conference on Quality Software (QSIC), (Portland, OR), October 2007.

[8] W. Ren, L. Qian, M. Steurer, and D. Cartes, “Real time digital simulations augmenting
the development of functional reconfiguration of PEBB and universal controller,” in
Proceedings of the 2005 American Control Conference, 2005, vol. 3, pp. 2005–2010,
June 2005.

[9] S. Ayasun, S. Vallieu, R. Fischl, and T. Chmielewski, “Electric machinery diagnos-
tic/testing system and power hardware-in-the-loop studies,” in 4th IEEE International
Symposium on Diagnostics for Electric Machines, Power Electronics and Drives,
2003 (SDEMPED 2003), pp. 361–366, August 2003.

[10] S. Ayasun, R. Fischl, T. Chmielewski, S. Vallieu, K. Miu, and C. Nwankpa, “Evalu-
ation of the static performance of a simulation-stimulation interface for power hard-
ware in the loop,” in 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3,
p. 8, June 2003.

[11] X. Wu, S. Lentijo, and A. Monti, “A novel interface for power-hardware-in-the-
loop simulation,” in 2004 IEEE Workshop on Computers in Power Electronics, 2004,
pp. 178–182, August 2004.

www.manaraa.com

38

[12] X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, “Design and implementation
of a power-hardware-in-the-loop interface: a non-linear load case study,” in Twentieth
Annual IEEE Applied Power Electronics Conference and Exposition, 2005 (APEC
2005), vol. 2, pp. 1332–1338, March 2005.

[13] Y. Liu, M. Steurer, S. Woodruff, and P. F. Ribeiro, “A novel power quality assessment
method using real time hardware-in-the-loop simulation,” in 11th International Con-
ference on Harmonics and Quality of Power, 2004, no. 11, pp. 690–695, September
2004.

[14] W. Zhu, S. Pekarek, J. Jatskevich, O. Wasynczuk, and D. Delisle, “A model-in-the-
loop interface to emulate source dynamics in a zonal DC distribution system,” IEEE
Transactions on Power Electronics, vol. 20, pp. 438–445, March 2005.

[15] R. B. Wells, J. Fisher, Y. Zhou, B. K. Johnson, and M. Kyte, “Hardware and software
considerations for implementing hardware-in-the-loop traffic simulation,” in The 27th
Annual Conference of the IEEE Industrial Electronics Society, 2001 (IECON ’01),
vol. 3, pp. 1915–1919, Nov/Dec 2001.

[16] R. Friedland and B. Kulicke, “Digital simulation and hardware-in-the-loop test of
controllers in electric power systems,” in First International Conference on Digital
Power System Simulators, 1995 (ICDS ’95), p. 277, April 1995.

[17] M. Steurer, S. Woodruff, N. Brooks, J. Giesbrecht, H. Li, and T. Baldwin, “Optimiz-
ing the transient response of voltage source converters used for mitigating voltage
collapse problems by means of real time digital simulation,” in 2003 IEEE Bologna
Power Tech Conference Proceedings, vol. 1, p. 6, June 2003.

[18] B. Lu, A. Monti, and R. A. Dougal, “Real-time hardware-in-the-loop testing during
design of power electronics controls,” in The 29th Annual Conference of the IEEE
Industrial Electronics Society, 2003 (IECON ’03), vol. 2, pp. 1840–1845, November
2003.

[19] B. Lu, X. Wu, and A. Monti, “Implementation of a low-cost real-time virtue test
bed for hardware-in-the-loop testing,” in 32nd Annual Conference of IEEE Industrial
Electronics Society, 2005 (IECON 2005), pp. 239–244, November 2005.

[20] B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low cost real-time hardware-in-the-
loop testing approach of power electronics controls,” IEEE Transactions on Industrial
Electronics, vol. 54, pp. 919–931, April 2007.

[21] “Real-Time Hardware-In-the-Loop (HIL) Simulation.” Online.
http://vtb.engr.sc.edu/research/reml/projects/rthil.asp, fetched August 22, 2007.

[22] L. U. Gökdere, C. W. Brice, and R. A. Dougal, “A virtual test bed for power electronic
circuits and electric drive systems,” in The 7th Workshop on Computers in Power
Electronics, 2000 (COMPEL 2000), (Blacksburg, VA), pp. 46–51, July 2000.

www.manaraa.com

39

[23] S. M. Shah and M. Irfan, “Embedded hardware/software verification and validation
using hardware-in-the-loop simulation,” in Proceedings of the IEEE Symposium on
Emerging Technologies, 2005, pp. 494–498, September 2005.

[24] P. Baracos, G. Murere, C. Rabbath, and W. Jin, “Enabling PC-based HIL simulation
for automotive applications,” in IEEE International Electric Machines and Drives
Conferences, 2001 (IEMDC 2001), pp. 721–729, 2001.

[25] V. R. Dinavahi, M. R. Iravani, and R. Bonert, “Real-time digital simulation of power
electronic apparatus interfaced with digital controllers,” IEEE Transactions on Power
Delivery, vol. 16, pp. 775–781, October 2001.

[26] M. O. Faruque, V. Dinavahi, and W. Xu, “Algorithms for the accounting of multiple
switching events in digital simualtion of power-electronic systems,” IEEE Transac-
tions on Power Delivery, vol. 20, pp. 1157–1167, April 2005.

[27] “Wind River: RTLinuxFree.” Online. http://www.rtlinuxfree.com/, fetched November
3, 2007.

[28] “RTAI - the RealTime Application Interface for Linux.” Online. https://www.rtai.org/,
fetched November 3, 2007.

[29] “KURT: The KU Real-Time Linux.” Online. http://www.ittc.ku.edu/kurt/, fetched
November 3, 2007.

[30] E. W. Dijkstra, “Cooperating sequential processes,” tech. rep., Technological Univer-
sity, Eindhoven, 1968. Second revision.

[31] D. C. Schmidt and T. Harrison, Pattern Languages of Program Design 3. Addison-
Wesley, 1997.

[32] M. Ryan, S. Markose, X. Liu, B. McMillin, and Y. Cheng, “Structured object-oriented
co-analysis/co-design of hardware/software for the facts power system,” in 29th An-
nual International Computer Software and Applications Conference, 2005 (COMP-
SAC 2005), vol. 1, pp. 396–402, July 2005.

[33] M. Ryan, S. Simsek, X. F. Liu, B. M. McMillin, and Y. Cheng, “An instance-based
structured object oriented method for co-analysis/co-design of concurrent embedded
systems,” in 30th Annual IEEE International Computers Software and Applications
Conference, (Chicago, IL), pp. 273–280, September 2006.

[34] L. Dong, M. L. Crow, Z. Yang, C. Shen, L. Zhang, and S. Atcitty, “A reconfig-
urable facts system for university laboratories,” IEEE Transactions on Power Systems,
vol. 19, pp. 120–128, February 2004.

[35] M. Crow, Computational Methods for Electric Power Systems. CRC Press, 2002.

[36] W. M. Siever, Power Grid Flow Control Studies And High Speed Simulation. PhD
thesis, University of Missouri-Rolla, Rolla, MO, 2007.

www.manaraa.com

40

[37] L. Zhang, Z. Yang, S. Chen, and M. L. Crow, “A PC-DSP-based unified control sys-
tem design for FACTS devices,” in IEEE Power Engineering Society Winter Meeting,
2001, vol. 1, pp. 252–257, Jan/Feb 2001.

[38] “Fault-Tolerant and Secure Power Grid Systems using FACTS Devices; FIL Home-
page.” Online. http://filpower.umr.edu/, fetched August 22, 2007.

www.manaraa.com

41

VITA

Ryan C. Underwood was born in Fort Worth, Texas on September 17, 1980. He was
raised in Saint Peters, Missouri where he attended primary, secondary, and high school.
Following high school, he enrolled at the University of Missouri-Rolla where he attended
until 2006. He was awarded a Bachelor of Science in Computer Science in 2004, after
which he pursued a M.S. in Computer Science, also at UMR. His Master’s studies were pri-
marily focused on improving the FACTS Interaction Laboratory power system simulation
and implementing a simulation framework for improved real-time performance. Following
his thesis work, he received a M.S. in Computer Science from UMR in December 2007.

www.manaraa.com

	An open framework for highly concurrent hardware-in-the-loop simulation
	Recommended Citation

	An open framework for highly concurrent hardware-in-the-loop simulation

